• 欢迎浏览“String me = Creater\忠实的资深Linux玩家;”,请文明浏览,理性发言,有侵犯你的权益请邮件我(creater@vip.qq.com).
  • 把任何的失败都当作一次尝试,不要自卑;把所有的成功都想成是一种幸运,不要自傲。
  •    12个月前 (10-09)  模式识别&机器学习 |   抢沙发  4 
    文章评分 0 次,平均分 0.0

    数据库的一个子集。

    MNIST数据库官方网址为:http://yann.lecun.com/exdb/mnist/ ,直接下载,train-images-idx3-ubyte.gz、train-labels-idx1-ubyte.gz等。下载四个文件,解压缩。解压缩后发现这些文件并不是标准的图像格式。这些图像数据都保存在二进制文件中。每个样本图像的宽高为28*28。

    以下为将其转换成普通的jpg图像格式的代码:
    Matlab

    % Matlab_Read_t10k-images_idx3.m
    % 用于读取MNIST数据集中t10k-images.idx3-ubyte文件并将其转换成bmp格式图片输出。
    % 用法:运行程序,会弹出选择测试图片数据文件t10k-labels.idx1-ubyte路径的对话框和
    % 选择保存测试图片路径的对话框,选择路径后程序自动运行完毕,期间进度条会显示处理进度。
    % 图片以TestImage_00001.bmp~TestImage_10000.bmp的格式保存在指定路径,10000个文件占用空间39M。。
    % 整个程序运行过程需几分钟时间。
    % Written By DXY@HUST IPRAI
    % 2009-2-22
    clear all;
    clc;
    %读取训练图片数据文件
    [FileName,PathName] = uigetfile('*.*','选择测试图片数据文件t10k-images.idx3-ubyte');
    TrainFile = fullfile(PathName,FileName);
    fid = fopen(TrainFile,'r'); %fopen()是最核心的函数,导入文件,‘r’代表读入
    a = fread(fid,16,'uint8'); %这里需要说明的是,包的前十六位是说明信息,从上面提到的那个网页可以看到具体那一位代表什么意义。所以a变量提取出这些信息,并记录下来,方便后面的建立矩阵等动作。
    MagicNum = ((a(1)*256+a(2))*256+a(3))*256+a(4);
    ImageNum = ((a(5)*256+a(6))*256+a(7))*256+a(8);
    ImageRow = ((a(9)*256+a(10))*256+a(11))*256+a(12);
    ImageCol = ((a(13)*256+a(14))*256+a(15))*256+a(16);
    %从上面提到的网页可以理解这四句
    if ((MagicNum~=2051)||(ImageNum~=10000))
        error('不是 MNIST t10k-images.idx3-ubyte 文件!');
        fclose(fid);    
        return;    
    end %排除选择错误的文件。
    savedirectory = uigetdir('','选择测试图片路径:');
    h_w = waitbar(0,'请稍候,处理中>>');
    for i=1:ImageNum
        b = fread(fid,ImageRow*ImageCol,'uint8');   %fread()也是核心的函数之一,b记录下了一副图的数据串。注意这里还是个串,是看不出任何端倪的。
        c = reshape(b,[ImageRow ImageCol]); %亮点来了,reshape重新构成矩阵,终于把串转化过来了。众所周知图片就是矩阵,这里reshape出来的灰度矩阵就是该手写数字的矩阵了。
        d = c'; %转置一下,因为c的数字是横着的。。。
        e = 255-d; %根据灰度理论,0是黑色,255是白色,为了弄成白底黑字就加入了e
        e = uint8(e);
        savepath = fullfile(savedirectory,['TestImage_' num2str(i,'d') '.bmp']);
        imwrite(e,savepath,'bmp'); %最后用imwrite写出图片
        waitbar(i/ImageNum);
    end
    fclose(fid);
    close(h_w);

    CPP

    #include "funset.hpp"
    #include <iostream>
    #include <fstream>
    #include <vector>
    #include <opencv2/opencv.hpp>
    
    static int ReverseInt(int i)
    {
    	unsigned char ch1, ch2, ch3, ch4;
    	ch1 = i & 255;
    	ch2 = (i >> 8) & 255;
    	ch3 = (i >> 16) & 255;
    	ch4 = (i >> 24) & 255;
    	return((int)ch1 << 24) + ((int)ch2 << 16) + ((int)ch3 << 8) + ch4;
    }
    
    static void read_Mnist(std::string filename, std::vector<cv::Mat> &vec)
    {
    	std::ifstream file(filename, std::ios::binary);
    	if (file.is_open()) {
    		int magic_number = 0;
    		int number_of_images = 0;
    		int n_rows = 0;
    		int n_cols = 0;
    		file.read((char*)&magic_number, sizeof(magic_number));
    		magic_number = ReverseInt(magic_number);
    		file.read((char*)&number_of_images, sizeof(number_of_images));
    		number_of_images = ReverseInt(number_of_images);
    		file.read((char*)&n_rows, sizeof(n_rows));
    		n_rows = ReverseInt(n_rows);
    		file.read((char*)&n_cols, sizeof(n_cols));
    		n_cols = ReverseInt(n_cols);
    
    		for (int i = 0; i < number_of_images; ++i) {
    			cv::Mat tp = cv::Mat::zeros(n_rows, n_cols, CV_8UC1);
    			for (int r = 0; r < n_rows; ++r) {
    				for (int c = 0; c < n_cols; ++c) {
    					unsigned char temp = 0;
    					file.read((char*)&temp, sizeof(temp));
    					tp.at<uchar>(r, c) = (int)temp;
    				}
    			}
    			vec.push_back(tp);
    		}
    	}
    }
    
    static void read_Mnist_Label(std::string filename, std::vector<int> &vec)
    {
    	std::ifstream file(filename, std::ios::binary);
    	if (file.is_open()) {
    		int magic_number = 0;
    		int number_of_images = 0;
    		int n_rows = 0;
    		int n_cols = 0;
    		file.read((char*)&magic_number, sizeof(magic_number));
    		magic_number = ReverseInt(magic_number);
    		file.read((char*)&number_of_images, sizeof(number_of_images));
    		number_of_images = ReverseInt(number_of_images);
    
    		for (int i = 0; i < number_of_images; ++i) {
    			unsigned char temp = 0;
    			file.read((char*)&temp, sizeof(temp));
    			vec[i] = (int)temp;
    		}
    	}
    }
    
    static std::string GetImageName(int number, int arr[])
    {
    	std::string str1, str2;
    
    	for (int i = 0; i < 10; i++) {
    		if (number == i) {
    			arr[i]++;
    			str1 = std::to_string(arr[i]);
    
    			if (arr[i] < 10) {
    				str1 = "0000" + str1;
    			} else if (arr[i] < 100) {
    				str1 = "000" + str1;
    			} else if (arr[i] < 1000) {
    				str1 = "00" + str1;
    			} else if (arr[i] < 10000) {
    				str1 = "0" + str1;
    			}
    
    			break;
    		}
    	}
    
    	str2 = std::to_string(number) + "_" + str1;
    
    	return str2;
    }
    
    int MNISTtoImage()
    {
    	// reference: http://eric-yuan.me/cpp-read-mnist/
    	// test images and test labels
    	// read MNIST image into OpenCV Mat vector
    	std::string filename_test_images = "E:/GitCode/NN_Test/data/database/MNIST/t10k-images.idx3-ubyte";
    	int number_of_test_images = 10000;
    	std::vector<cv::Mat> vec_test_images;
    
    	read_Mnist(filename_test_images, vec_test_images);
    
    	// read MNIST label into int vector
    	std::string filename_test_labels = "E:/GitCode/NN_Test/data/database/MNIST/t10k-labels.idx1-ubyte";
    	std::vector<int> vec_test_labels(number_of_test_images);
    
    	read_Mnist_Label(filename_test_labels, vec_test_labels);
    
    	if (vec_test_images.size() != vec_test_labels.size()) {
    		std::cout << "parse MNIST test file error" << std::endl;
    		return -1;
    	}
    
    	// save test images
    	int count_digits[10];
    	std::fill(&count_digits[0], &count_digits[0] + 10, 0);
    
    	std::string save_test_images_path = "E:/GitCode/NN_Test/data/tmp/MNIST/test_images/";
    
    	for (int i = 0; i < vec_test_images.size(); i++) {
    		int number = vec_test_labels[i];
    		std::string image_name = GetImageName(number, count_digits);
    		image_name = save_test_images_path + image_name + ".jpg";
    
    		cv::imwrite(image_name, vec_test_images[i]);
    	}
    
    	// train images and train labels
    	// read MNIST image into OpenCV Mat vector
    	std::string filename_train_images = "E:/GitCode/NN_Test/data/database/MNIST/train-images.idx3-ubyte";
    	int number_of_train_images = 60000;
    	std::vector<cv::Mat> vec_train_images;
    
    	read_Mnist(filename_train_images, vec_train_images);
    
    	// read MNIST label into int vector
    	std::string filename_train_labels = "E:/GitCode/NN_Test/data/database/MNIST/train-labels.idx1-ubyte";
    	std::vector<int> vec_train_labels(number_of_train_images);
    
    	read_Mnist_Label(filename_train_labels, vec_train_labels);
    
    	if (vec_train_images.size() != vec_train_labels.size()) {
    		std::cout << "parse MNIST train file error" << std::endl;
    		return -1;
    	}
    
    	// save train images
    	std::fill(&count_digits[0], &count_digits[0] + 10, 0);
    
    	std::string save_train_images_path = "E:/GitCode/NN_Test/data/tmp/MNIST/train_images/";
    
    	for (int i = 0; i < vec_train_images.size(); i++) {
    		int number = vec_train_labels[i];
    		std::string image_name = GetImageName(number, count_digits);
    		image_name = save_train_images_path + image_name + ".jpg";
    
    		cv::imwrite(image_name, vec_train_images[i]);
    	}
    
    	// save big imags
    	std::string images_path = "E:/GitCode/NN_Test/data/tmp/MNIST/train_images/";
    	int width = 28 * 20;
    	int height = 28 * 10;
    	cv::Mat dst(height, width, CV_8UC1);
    
    	for (int i = 0; i < 10; i++) {
    		for (int j = 1; j <= 20; j++) {
    			int x = (j-1) * 28;
    			int y = i * 28;
    			cv::Mat part = dst(cv::Rect(x, y, 28, 28));
    
    			std::string str = std::to_string(j);
    			if (j < 10)
    				str = "0000" + str;
    			else
    				str = "000" + str;
    
    			str = std::to_string(i) + "_" + str + ".jpg";
    			std::string input_image = images_path + str;
    
    			cv::Mat src = cv::imread(input_image, 0);
    			if (src.empty()) {
    				fprintf(stderr, "read image error: %s\n", input_image.c_str());
    				return -1;
    			}
    
    			src.copyTo(part);
    		}
    	}
    
    	std::string output_image = images_path + "result.png";
    	cv::imwrite(output_image, dst);
    
    	return 0;
    }
     

    除特别注明外,本站所有文章均为String me = "Creater\忠实的资深Linux玩家";原创,转载请注明出处来自http://unix8.net/home.php/5639.html

    关于

    发表评论

    暂无评论

    切换注册

    登录

    忘记密码 ?

    切换登录

    注册

    扫一扫二维码分享